An upper bound on the cutoff rate of sequential decoding

نویسنده

  • Erdal Arikan
چکیده

An upper bound is given on the cutoff rate of discrete memoryless channels. This upper bound, which coincides with a known lower bound, determines the cutoff rate, and settles a long-standing open problem.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An inequality on guessing and its application to sequential decoding

Let (X, Y) be a pair of discrete random variables with X taking one of M possible values. Suppose the value of X is to be determined, given the value of Y, by asking quest ions of the form “Is X equal to z?” until the answer is “Yes.” Let G(r 1 y) denote the number of guesses in any such guessing scheme when X = x, Y = y. W e prove that 1 1+/J E[G(X IY)‘] 2 (l+InM)-P~ for any p > 0. This provid...

متن کامل

Sequential Decoding of Lattice Codes

We consider lattice tree-codes based on a latt ice A having a finite trellis diagram T . Such codes are easy to encode and benefit f rom the structure of A. Sequential decoding of lattice tree-codes is studied, and the corresponding Fano metric is derived. A n upper bound on the running time of the sequential decoding algorithm is established, and found to resemble the Pareto distribution. O u ...

متن کامل

Sequential decoding for the exponential server timing channel

We show the existence of a good tree code with a sequential decoder for the exponential server timing channel. The expected number of computations before moving one step ahead is upper-bounded by a finite number. The rate of information transfer for this code is (2 ) nats per second, i.e., one half of the capacity. The cutoff rate for the exponential server queue is therefore at least (2 ) nats...

متن کامل

On the Error Probability of General Trellis Codes with Applications to Sequential Decoding

An upper bound on the average error probability for maximum-likelihood decoding of the ensemble of random L-branch binary trellis codes of rate R = l/n is given which separates the effects of the tail length T and the memory length M of the code. It is shown that the bound is independent of the length L of the information sequence when M 2 T + [nEvu(R)]-’ log, L. The implication that the actual...

متن کامل

Analysis of Sequential Decoding Complexity Using the Berry-Esseen Inequality

This study presents a novel technique to estimate the computational complexity of sequential decoding using the Berry-Esseen theorem. Unlike the theoretical bounds determined by the conventional central limit theorem argument, which often holds only for sufficiently large codeword length, the new bound obtained from the Berry-Esseen theorem is valid for any blocklength. The accuracy of the new ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Information Theory

دوره 34  شماره 

صفحات  -

تاریخ انتشار 1988